Summary

 

Cams are widely used in engines, machine tools, textile and packaging machines.  Their purpose is to convert rotary motion into linear or rocking motion of the cam follower.  Within certain limits any desired linear/rocking motion can be obtained by a suitable cam profile. 

The purpose of this experiment is to investigate tappet motion for several different cam profiles and the effect of using different followers will be investigate.  The apparatus used is the cam and tappet apparatus with roller, domed and flat followers equipped with dial indicator shown in APPENDIX.  There are five types of cams used that is convex, tangent, harmonic, circular and constant acceleration cam.

The result of the experiment is tabulated and shown at the Data, Observation and Result section.  The graph of displacement against angle for the all types of cam is plotted.  The velocity and acceleration value for constant acceleration cam and harmonic cam is calculated and graph is plotted.

 

Below are the findings of the experiment based on the results and the plotted graph.

 

1.       Different cam profile gives some effects on the throw and so does the follower.  All the cams has quite the same graph behaviour that is quadratic.  Regardless of the follower and cam used, the displacement will go back to its original position after completing one full revolution of the rotor.

2.       The flat follower will give a slower response compared to domed and roller follower.  The domed follower is the first showing the output reading (displacement measured). 

3.       The theoretical and measured values of throw are quite different.  The theoretical and measured values of throw shown a small deviation for harmonic, circular and constant acceleration cam and a very large different for tangent and convex cam since error is generated during experiment.

4.       The plots of displacement against angle for the constant acceleration, harmonic and circular cams is about the same.  However, the displacement at respective angle is greatest for constant acceleration cam, followed by circular cam and harmonic cam.  Theoretically, the displacement occurs in one full revolution that is from 0° to 360° for these three cams.

5.       The plots of convex and tangent cams is quite same because both profiles has flanks formed by circular arcs.  Theoretically, the displacement occurs only about 180° from 90° to 180°.

6.       All cams have their maximum  throw value at an angle of 180 °.

7.       The velocity profile for harmonic cam gives sine curve and for constant acceleration give constant increase and decrease in velocity at alternate 90°.

8.       The constant acceleration cam gives constant acceleration and deceleration while the acceleration of harmonic cam is in cosine curve.

9.       It has been proven that the constant acceleration cam with domed follower will gave the greatest cam throw and faster response time compared to others.

 

In conclusion, by doing the cam and tappet experiment, the tappet motion for several different cam profiles have been investigated.  The objective of the experiment is achieved since the results of the experiment tends to agree to the theoretical aspects of the experiment.

 

 

 

 

 

 

Purpose / Objective

 

The purpose of this experiment is to investigate tappet motion for several different cam profiles and to see the effect of different followers.

 

Procedure

 

1.      The first part of the experiment is performed with domed follower.  The two knurled nuts is undo and the two and the two washer is removed so that the cam can be insert into its position.

2.      The end of the dial indicator is held and pulled gently away from the rotor or where the cam is to be fitted.

3.      The convex cam is then placed onto the two studs with their larger radius at the center of the rotation.  This is done so that the incorrect cam orientation will not give much throw and so that the dial instructor can measure the range of travel.

4.      The dial indicator stem is then can be gently allowed to touch the cam.

5.      The washer is then placed onto the studs and the knurled nuts are added.

6.      The dial indicator is set to zero when the rotor is set at 0°.

7.      Thereadings of the dial indicator is taken for every 10° on the result sheet.

8.      The procedure 1 to 7 is repeated for tangent, simple harmonic, circular and constant acceleration cam.

9.      For the second part of the experiment, all the above procedures are repeated using the flat and roller follower.  In order to change the follower, the dial indicator unit is removed from the apparatus by removing the two knurled nuts and washer under the base.  The follower is unscrewed from the dial indicator stem and one of the other follower is screwed into place.  The unit is then placed onto the base with its position adjusted in order for dial indicator to measures the full range of cam throw.


Data, Observation and Result

 

The data of the cam throw for domed, roller, flat follower and the theoretical value is shown in the tables below.

 

·         Domed follower

 

Table 1: Convex cam

 

 

 

 

 

 

 

 

Apparatus

Theory

x Measured

x Measured

x Theoretical

(degrees)

(degrees)

(* 0.1mm)

(mm)

(mm)

0

 

0

0

0

10

 

-1

-0.1

0

20

 

1

0.1

0

30

 

1

0.1

0

40

 

1

0.1

0

50

 

0.5

0.05

0

60

 

0

0

0

70

 

-0.5

-0.05

0

80

 

-1

-0.1

0

90

0

-1

-0.1

0

100

10

1

0.1

0.1951

110

20

7

0.7

0.7925

120

30

19

1.9

1.8307

130

40

37

3.7

3.3768

140

50

59

5.9

5.5247

150

60

88

8.8

8.3939

160

70

127

12.7

12.1122

170

80

174

17.4

16.7818

180

90

194

19.4

19.85

190

100

184

18.4

16.7818

200

110

142

14.2

12.1122

210

120

98

9.8

8.3939

220

130

65

6.5

5.5247

230

140

39

3.9

3.3768

240

150

21

2.1

1.8307

250

160

17

1.7

0.7925

260

170

0

0

0.1951

270

180

-3

-0.3

0

280

 

-2.5

-0.25

0

290

 

-2

-0.2

0

300

 

-1.5

-0.15

0

310

 

-1

-0.1

0

320

 

-0.5

-0.05

0

330

 

0

0

0

340

 

0

0

0

350

 

0

0

0

360

 

0

0

0

 

 

 

 

 

 

 

 

 

 

Table 2: Harmonic cam

 

 

 

 

 

 

 

 

Apparatus

Theory

x Measured

x Measured

x Theoretical

(degrees)

(degrees)

(* 0.1mm)

(mm)

(mm)

0

0

0

0

0

10

10

1

0.1

0.152

20

20

6

0.6

0.603

30

30

14

1.4

1.339

40

40

22

2.2

2.339

50

50

36

3.6

3.572

60

60

50

5

5

70

70

66

6.6

6.579

80

80

82.5

8.25

8.264

90

90

99.5

9.95

10

100

100

116

11.6

11.736

110

110

131

13.1

13.42

120

120

146

14.6

15

130

130

160

16

16.428

140

140

172

17.2

17.66

150

150

181

18.1

18.66

160

160

188

18.8

19.397

170

170

193

19.3

19.848

180

180

195

19.5

20

190

190

194

19.4

19.848

200

200

190

19

19.397

210

210

183.5

18.35

18.66

220

220

176

17.6

17.66

230

230

165

16.5

16.428

240

240

152

15.2

15

250

250

137.5

13.75

13.42

260

260

121

12.1

11.736

270

270

105

10.5

10

280

280

90

9

8.264

290

290

73

7.3

6.579

300

300

57

5.7

5

310

310

43

4.3

3.572

320

320

30

3

2.339

330

330

19

1.9

1.339

340

340

10

1

0.603

350

350

3

0.3

0.152

360

360

0

0

0


 


 

 

 

 

Table 3: Tangent cam

 

 

 

 

 

 

 

 

Apparatus

Theory

x Measured

x Measured

x Theoretical

(degrees)

(degrees)

(* 0.1mm)

(mm)

(mm)

0

 

0

0

0

10

 

0.5

0.05

0

20

 

0.5

0.05

0

30

 

0.5

0.05

0

40

 

0

0

0

50

 

0

0

0

60

 

0

0

0

70

 

0

0

0

80

 

0

0

0

90

0

-0.5

-0.05

1.3040

100

10

-0.5

-0.05

0.2971

110

20

-1

-0.1

0.0009

120

30

2

0.2

0.3683

130

40

17

1.7

1.4581

140

50

42

4.2

3.4604

150

60

81

8.1

6.7870

160

70

140

14

12.3224

170

80

181

18.1

22.2020

180

90

196

19.6

43.0031

190

100

188

18.8

22.2020

200

110

155

15.5

12.3224

210

120

92

9.2

6.7870

220

130

43

4.3

3.4604

230

140

17

1.7

1.4581

240

150

1

0.1

0.3683

250

160

-4

-0.4

0.0009

260

170

-3

-0.3

0.2971

270

180

-2.5

-0.25

1.3040

280

 

-2

-0.2

0

290

 

-1.5

-0.15

0

300

 

-1

-0.1

0

310

 

-0.5

-0.05

0

320

 

-0.5

-0.05

0

330

 

0

0

0

340

 

0.5

0.05

0

350

 

1

0.1

0

360

 

1.5

0.15

0


 

 

 

 

 

 

Table 4: Constant accn.

cam

 

 

 

 

 

 

Apparatus

Theory

x Measured

x Measured

x Theoretical

(degrees)

(degrees)

(* 0.1mm)

(mm)

(mm)

0

0

0

0

0

10

10

0.5

0.05

0.1235

20

20

4

0.4

0.4938

30

30

11

1.1

1.1111

40

40

19

1.9

1.9753

50

50

31.5

3.15

3.0864

60

60

44

4.4

4.4444

70

70

62

6.2

6.0494

80

80

82

8.2

7.9012

90

90

102

10.2

10

100

100

124

12.4

12.0988

110

110

143

14.3

13.9506

120

120

159

15.9

15.5556

130

130

172

17.2

16.9136

140

140

183

18.3

18.0247

150

150

192

19.2

18.8889

160

160

198

19.8

19.5062

170

170

202

20.2

19.8765

180

180

203.5

20.35

20

190

190

202.5

20.25

19.8765

200

200

199

19.9

19.5062

210

210

194

19.4

18.8889

220

220

186

18.6

18.0247

230

230

176

17.6

16.9136

240

240

164

16.4

15.5556

250

250

148.5

14.85

13.9506

260

260

130

13

12.0988

270

270

111

11.1

10

280

280

91

9.1

7.9012

290

290

71.5

7.15

6.0494

300

300

52.5

5.25

4.4444

310

310

39

3.9

3.0864

320

320

26

2.6

1.9753

330

330

16

1.6

1.1111

340

340

9

0.9

0.4938

350

350

3

0.3

0.1235

360

360

1

0.1

0


 

 

 

 

 

 

Table 5: Circular cam

 

 

 

 

 

 

 

 

Apparatus

Theory

x Measured

x Measured

x Theoretical

(degrees)

(degrees)

(* 0.1mm)

(mm)

(mm)

0

0

0

0

0

10

10

1

0.1

0.2

20

20

4

0.4

0.8

30

30

9

0.9

1.8

40

40

16

1.6

3.1

50

50

21

2.1

4.6

60

60

37.5

3.75

6.3

70

70

50

5

8

80

80

68

6.8

9.8

90

90

84.5

8.45

11.6

100

100

101

10.1

13.2

110

110

119

11.9

14.6

120

120

137

13.7

16

130

130

154

15.4

17.1

140

140

168

16.8

18

150

150

179

17.9

18.7

160

160

189

18.9

19.2

170

170

195

19.5

19.5

180

180

197

19.7

19.7

190

190

196

19.6

19.5

200

200

191

19.1

19.2

210

210

183

18.3

18.7

220

220

171

17.1

18

230

230

159

15.9

17.1

240

240

144

14.4

16

250

250

124

12.4

14.6

260

260

108

10.8

13.2

270

270

90

9

11.6

280

280

73.5

7.35

9.8

290

290

56.5

5.65

8

300

300

43.5

4.35

6.3

310

310

31

3.1

4.6

320

320

21.5

2.15

3.1

330

330

13

1.3

1.8

340

340

7

0.7

0.8

350

350

3

0.3

0.2

360

360

1.5

0.15

0

 


·         Roller follower

 

Table 6: Convex cam

 

 

 

 

 

 

 

 

Apparatus

Theory

x Measured

x Measured

x Theoretical

(degrees)

(degrees)

(* 0.1mm)

(mm)

(mm)

0

 

0

0

0

10

 

0

0

0

20

 

0

0

0

30

 

-0.5

-0.05

0

40

 

-0.5

-0.05

0

50

 

-1

-0.1

0

60

 

-1.5

-0.15

0

70

 

-2

-0.2

0

80

 

-3

-0.3

0

90

0

-3

-0.3

0

100

10

-1

-0.1

0.1951

110

20

5

0.5

0.7925

120

30

16

1.6

1.8307

130

40

31

3.1

3.3768

140

50

53

5.3

5.5247

150

60

81

8.1

8.3939

160

70

118

11.8

12.1122

170

80

168

16.8

16.7818

180

90

193

19.3

19.85

190

100

162

16.2

16.7818

200

110

114

11.4

12.1122

210

120

80

8

8.3939

220

130

52

5.2

5.5247

230

140

30

3

3.3768

240

150

16

1.6

1.8307

250

160

4.5

0.45

0.7925

260

170

-1

-0.1

0.1951

270

180

-2

-0.2

0

280

 

-2

-0.2

0

290

 

-1.5

-0.15

0

300

 

-1

-0.1

0

310

 

-0.5

-0.05

0

320

 

0

0

0

330

 

0

0

0

340

 

0.5

0.05

0

350

 

0.5

0.05

0

360

 

0.5

0.05

0


 

 

 

 

 

 

Table 7: Harmonic cam

 

 

 

 

 

 

 

 

Apparatus

Theory

x Measured

x Measured

x Theoretical

(degrees)

(degrees)

(* 0.1mm)

(mm)

(mm)

0

0

0

0

0

10

10

2

0.2

0.152

20

20

7

0.7

0.603

30

30

14.5

1.45

1.339

40

40

24

2.4

2.339

50

50

30

3

3.572

60

60

50

5

5

70

70

61

6.1

6.579

80

80

83

8.3

8.264

90

90

99

9.9

10

100

100

117

11.7

11.736

110

110

133

13.3

13.42

120

120

148

14.8

15

130

130

162

16.2

16.428

140

140

175

17.5

17.66

150

150

184

18.4

18.66

160

160

197

19.7

19.397

170

170

197

19.7

19.848

180

180

198

19.8

20

190

190

194

19.4

19.848

200

200

192

19.2

19.397

210

210

185

18.5

18.66

220

220

175

17.5

17.66

230

230

163

16.3

16.428

240

240

149

14.9

15

250

250

133

13.3

13.42

260

260

117

11.7

11.736

270

270

99

9.9

10

280

280

83

8.3

8.264

290

290

65

6.5

6.579

300

300

51

5.1

5

310

310

38

3.8

3.572

320

320

26

2.6

2.339

330

330

16

1.6

1.339

340

340

8

0.8

0.603

350

350

3

0.3

0.152

360

360

2

0.2

0


 

 

 

 

 

 

Table 8: Tangent cam

 

 

 

 

 

 

 

 

Apparatus

Theory

x Measured

x Measured

x Theoretical

(degrees)

(degrees)

(* 0.1mm)

(mm)

(mm)

0

 

0

0

0

10

 

0

0

0

20

 

0

0

0

30

 

0

0

0

40

 

-0.5

-0.05

0

50

 

-1.5

-0.15

0

60

 

-1.5

-0.15

0

70

 

-1.5

-0.15

0

80

 

-2

-0.2

0

90

0

-3

-0.3

1.3040

100

10

-3

-0.3

0.2971

110

20

-3.5

-0.35

0.0009

120

30

1

0.1

0.3683

130

40

12

1.2

1.4581

140

50

32

3.2

3.4604

150

60

62.5

6.25

6.7870

160

70

121

12.1

12.3224

170

80

179

17.9

22.2020

180

90

194

19.4

43.0031

190

100

172

17.2

22.2020

200

110

113

11.3

12.3224

210

120

57

5.7

6.7870

220

130

26

2.6

3.4604

230

140

7

0.7

1.4581

240

150

-2

-0.2

0.3683

250

160

-4

-0.4

0.0009

260

170

-4

-0.4

0.2971

270

180

-3.5

-0.35

1.3040

280

 

-3

-0.3

0

290

 

-2.5

-0.25

0

300

 

-2

-0.2

0

310

 

-1.5

-0.15

0

320

 

-1

-0.1

0

330

 

-1

-0.1

0

340

 

-0.5

-0.05

0

350

 

-0.5

-0.05

0

360

 

0

0

0


 

 

 

 

 

Table 9: Constant accn.

cam

 

 

 

 

 

 

Apparatus

Theory

x Measured

x Measured

x Theoretical

(degrees)

(degrees)

(* 0.1mm)

(mm)

(mm)

0

0

0

0

0

10

10

1

0.1

0.1235

20

20

5

0.5

0.4938

30

30

11

1.1

1.1111

40

40

19

1.9

1.9753

50

50

30

3

3.0864

60

60

43

4.3

4.4444

70

70

59

5.9

6.0494

80

80

74

7.4

7.9012

90

90

101

10.1

10

100

100

120

12

12.0988

110

110

140

14

13.9506

120

120

156

15.6

15.5556

130

130

171

17.1

16.9136

140

140

184

18.4

18.0247

150

150

192

19.2

18.8889

160

160

199

19.9

19.5062

170

170

203

20.3

19.8765

180

180

204

20.4

20

190

190

203

20.3

19.8765

200

200

199

19.9

19.5062

210

210

192

19.2

18.8889

220

220

184

18.4

18.0247

230

230

171

17.1

16.9136

240

240

158

15.8

15.5556

250

250

142

14.2

13.9506

260

260

122

12.2

12.0988

270

270

100

10

10

280

280

80

8

7.9012

290

290

61

6.1

6.0494

300

300

45

4.5

4.4444

310

310

32

3.2

3.0864

320

320

20

2

1.9753

330

330

12

1.2

1.1111

340

340

6

0.6

0.4938

350

350

2

0.2

0.1235

360

360

1

0.1

0


 

 

 

 

 

 

Table 10: Circular cam

 

 

 

 

 

 

 

 

Apparatus

Theory

x Measured

x Measured

x Theoretical

(degrees)

(degrees)

(* 0.1mm)

(mm)

(mm)

0

0

0

0

0

10

10

1

0.1

0.2

20

20

4

0.4

0.8

30

30

9

0.9

1.8

40

40

16

1.6

3.1

50

50

26

2.6

4.6

60

60

36

3.6

6.3

70

70

49

4.9

8

80

80

64

6.4

9.8

90

90

81

8.1

11.6

100

100

98

9.8

13.2

110

110

116

11.6

14.6

120

120

133

13.3

16

130

130

151

15.1

17.1

140

140

165

16.5

18

150

150

177

17.7

18.7

160

160

187

18.7

19.2

170

170

193

19.3

19.5

180

180

195

19.5

19.7

190

190

193

19.3

19.5

200

200

184

18.4

19.2

210

210

178

17.8

18.7

220

220

166

16.6

18

230

230

160

16

17.1

240

240

135

13.5

16

250

250

117

11.7

14.6

260

260

97

9.7

13.2

270

270

80

8

11.6

280

280

64

6.4

9.8

290

290

49

4.9

8

300

300

37

3.7

6.3

310

310

26

2.6

4.6

320

320

16

1.6

3.1

330

330

10

1

1.8

340

340

5

0.5

0.8

350

350

2

0.2

0.2

360

360

1

0.1

0

 


·         Flat follower

 

Table 11: Convex cam

 

 

 

 

 

 

 

 

Apparatus

Theory

x Measured

x Measured

x Theoretical

(degrees)

(degrees)

(* 0.1mm)

(mm)

(mm)

0

 

0

0

0

10

 

-0.1

-0.01

0

20

 

-1

-0.1

0

30

 

-1

-0.1

0

40

 

-1.5

-0.15

0

50

 

-2

-0.2

0

60

 

-3

-0.3

0

70

 

-2.5

-0.25

0

80

 

-2.5

-0.25

0

90

0

-3

-0.3

0

100

10

2

0.2

0.1951

110

20

15

1.5

0.7925

120

30

34

3.4

1.8307

130

40

56

5.6

3.3768

140

50

86

8.6

5.5247

150

60

120

12

8.3939

160

70

160

16

12.1122

170

80

187

18.7

16.7818

180

90

194.5

19.45

19.85

190

100

191

19.1

16.7818

200

110

178

17.8

12.1122

210

120

143

14.3

8.3939

220

130

106

10.6

5.5247

230

140

72

7.2

3.3768

240

150

44

4.4

1.8307

250

160

22.5

2.25

0.7925

260

170

4.5

0.45

0.1951

270

180

-2

-0.2

0

280

 

-1.5

-0.15

0

290

 

-1

-0.1

0

300

 

-0.5

-0.05

0

310

 

-0.1

-0.01

0

320

 

0

0

0

330

 

0

0

0

340

 

0.5

0.05

0

350

 

0.5

0.05

0

360

 

0

0

0


 

 

 

 

 

 

Table 12: Harmonic cam

 

 

 

 

 

 

 

 

Apparatus

Theory

x Measured

x Measured

x Theoretical

(degrees)

(degrees)

(* 0.1mm)

(mm)

(mm)

0

0

0

0

0

10

10

3

0.3

0.152

20

20

11

1.1

0.603

30

30

21.5

2.15

1.339

40

40

34

3.4

2.339

50

50

49

4.9

3.572

60

60

64

6.4

5

70

70

80

8

6.579

80

80

98

9.8

8.264

90

90

114

11.4

10

100

100

128

12.8

11.736

110

110

144

14.4

13.42

120

120

158

15.8

15

130

130

167.5

16.75

16.428

140

140

178

17.8

17.66

150

150

186

18.6

18.66

160

160

192

19.2

19.397

170

170

196

19.6

19.848

180

180

198

19.8

20

190

190

197

19.7

19.848

200

200

193

19.3

19.397

210

210

187

18.7

18.66

220

220

180

18

17.66

230

230

170

17

16.428

240

240

158

15.8

15

250

250

145

14.5

13.42

260

260

130

13

11.736

270

270

114

11.4

10

280

280

98

9.8

8.264

290

290

80

8

6.579

300

300

65

6.5

5

310

310

50

5

3.572

320

320

35

3.5

2.339

330

330

23

2.3

1.339

340

340

12

1.2

0.603

350

350

3

0.3

0.152

360

360

0

0

0


 

 

 

 

 

 

Table 13: Tangent cam

 

 

 

 

 

 

 

 

Apparatus

Theory

x Measured

x Measured

x Theoretical

(degrees)

(degrees)

(* 0.1mm)

(mm)

(mm)

0

 

0

0

0

10

 

1

0.1

0

20

 

1.5

0.15

0

30

 

1.2

0.12

0

40

 

1

0.1

0

50

 

1

0.1

0

60

 

1

0.1

0

70

 

0.9

0.09

0

80

 

0.5

0.05

0

90

0

0

0

1.3040

100

10

-0.5

-0.05

0.2971

110

20

0

0

0.0009

120

30

18.5

1.85

0.3683

130

40

44

4.4

1.4581

140

50

81

8.1

3.4604

150

60

132.5

13.25

6.7870

160

70

177.5

17.75

12.3224

170

80

192.5

19.25

22.2020

180

90

197

19.7

43.0031

190

100

192

19.2

22.2020

200

110

179

17.9

12.3224

210

120

147.5

14.75

6.7870

220

130

92

9.2

3.4604

230

140

51.5

5.15

1.4581

240

150

22

2.2

0.3683

250

160

0

0

0.0009

260

170

-2

-0.2

0.2971

270

180

-2

-0.2

1.3040

280

 

-1.5

-0.15

0

290

 

-1.5

-0.15

0

300

 

-1

-0.1

0

310

 

-1

-0.1

0

320

 

-1

-0.1

0

330

 

-0.8

-0.08

0

340

 

-0.5

-0.05

0

350

 

0

0

0

360

 

0

0

0


 

 

 

 

 

 

Table 14: Constant accn.

cam

 

 

 

 

 

 

Apparatus

Theory

x Measured

x Measured

x Theoretical

(degrees)

(degrees)

(* 0.1mm)

(mm)

(mm)

0

0

0

0

0

10

10

2

0.2

0.1235

20

20

8

0.8

0.4938

30

30

17

1.7

1.1111

40

40

29

2.9

1.9753

50

50

44

4.4

3.0864

60

60

61.5

6.15

4.4444

70

70

79

7.9

6.0494

80

80

101.5

10.15

7.9012

90

90

121

12.1

10

100

100

137

13.7

12.0988

110

110

153

15.3

13.9506

120

120

166

16.6

15.5556

130

130

172

17.2

16.9136

140

140

187

18.7

18.0247

150

150

194

19.4

18.8889

160

160

200

20

19.5062

170

170

203.5

20.35

19.8765

180

180

205

20.5

20

190

190

204

20.4

19.8765

200

200

201

20.1

19.5062

210

210

196

19.6

18.8889

220

220

189

18.9

18.0247

230

230

180

18

16.9136

240

240

169

16.9

15.5556

250

250

155

15.5

13.9506

260

260

140

14

12.0988

270

270

124

12.4

10

280

280

105

10.5

7.9012

290

290

84

8.4

6.0494

300

300

65

6.5

4.4444

310

310

48

4.8

3.0864

320

320

33

3.3

1.9753

330

330

20

2

1.1111

340

340

10

1

0.4938

350

350

3

0.3

0.1235

360

360

0.5

0.05

0


 

 

 

 

 

 

Table 15: Circular cam

 

 

 

 

 

 

 

 

Apparatus

Theory

x Measured

x Measured

x Theoretical

(degrees)

(degrees)

(* 0.1mm)

(mm)

(mm)

0

0

0

0

0

10

10

2

0.2

0.2

20

20

6.5

0.65

0.8

30

30

14

1.4

1.8

40

40

23.5

2.35

3.1

50

50

35

3.5

4.6

60

60

49

4.9

6.3

70

70

65

6.5

8

80

80

81

8.1

9.8

90

90

98

9.8

11.6

100

100

115

11.5

13.2

110

110

131

13.1

14.6

120

120

147

14.7

16

130

130

160

16

17.1

140

140

173

17.3

18

150

150

183

18.3

18.7

160

160

191

19.1

19.2

170

170

195.5

19.55

19.5

180

180

197

19.7

19.7

190

190

196

19.6

19.5

200

200

191

19.1

19.2

210

210

184

18.4

18.7

220

220

175

17.5

18

230

230

163

16.3

17.1

240

240

149

14.9

16

250

250

134

13.4

14.6

260

260

117

11.7

13.2

270

270

100

10

11.6

280

280

83

8.3

9.8

290

290

66

6.6

8

300

300

51

5.1

6.3

310

310

37

3.7

4.6

320

320

25

2.5

3.1

330

330

15

1.5

1.8

340

340

8

0.8

0.8

350

350

3

0.3

0.2

360

360

1.5

0.15

0

 

 

From the data recorded, the graph of measured and theoretical displacement against angle for different types of cam based on the data in the tables above was plotted in one graph, attached in the APPENDIX.

 

 


Discussion

            With reference to the experimental data tabulated and the plotted graphs, the tappet motion for several different cam profiles and the effect of different followers is obtained.  It can be seen that the follower (flat, domed and roller) gives some effects on the throw and so does the profiles of the cam used.  All the cams has quite the same graph behaviour that is quadratic.  Regardless of the follower and cam used, the displacement will go back to its original position after completing one full revolution of the rotor.  In term of time of response, the flat follower will give a slower response compared to domed and roller follower.  The domed follower is the first showing the output reading (displacement measured). 

For different cam types, the theoretical and measured values of throw are different.  The theoretical and measured values of throw shown a small deviation for harmonic, circular and constant acceleration cam and a very large different for tangent and convex cam.  This may be caused by the error that occurs while performing the experiment.  One possible source of error is due to the incorrect cam orientation during the experiment that give too much flow which unable the measurement of range travel.  Moreover, the dial indicator reliability is low since it not precise in giving the results because it has been used in the experiment that is done many times before this.  In addition, paralax error occurs during reading of the dial indicator is taken that give fluctuation in positive and negative reading.  All this has lead to the loss of accuracy and precision of the experiment results.

The plots of displacement against angle for the constant acceleration, harmonic and circular cams is about the same.  However, the displacement at respective angle is greatest for constant acceleration cam, followed by circular cam and harmonic cam.  So, it can be said that constant acceleration cam has the greatest cam throw compared to others.  Both experimentally and theoretically have shown

that all three cams have their maximum value at an angle of 180 °. 


Table 16 below shows the velocity and acceleration value for constant acceleration cam and harmonic cam. 

 

Angle

Harmonic cam

Constant accn. cam

(degrees)

Velocity

Acceleration

Velocity

Acceleration

 

(m/s)

(m/s2)

(m/s)

(m/s2)

0

0.0000

0.0100

0.0000

0.5556

10

0.0017

0.0098

0.3704

0.5556

20

0.0034

0.0094

0.7407

0.5556

30

0.0050

0.0087

1.1111

0.5556

40

0.0064

0.0077

1.4815

0.5556

50

0.0077

0.0064

1.8519

0.5556

60

0.0087

0.0050

2.2222

0.5556

70

0.0094

0.0034

2.5926

0.5556

80

0.0098

0.0017

2.9630

0.5556

90

0.0100

0.0000

3.3333

0.5556

100

0.0098

-0.0017

-2.9630

-0.5556

110

0.0094

-0.0034

-2.5926

-0.5556

120

0.0087

-0.0050

-2.2222

-0.5556

130

0.0077

-0.0064

-1.8519

-0.5556

140

0.0064

-0.0077

-1.4815

-0.5556

150

0.0050

-0.0087

-1.1111

-0.5556

160

0.0034

-0.0094

-0.7407

-0.5556

170

0.0017

-0.0098

-0.3704

-0.5556

180

0.0000

-0.0100

0.0000

-0.5556

190

-0.0017

-0.0098

-0.3704

-0.5556

200

-0.0034

-0.0094

-0.7407

-0.5556

210

-0.0050

-0.0087

-1.1111

-0.5556

220

-0.0064

-0.0077

-1.4815

-0.5556

230

-0.0077

-0.0064

-1.8519

-0.5556

240

-0.0087

-0.0050

-2.2222

-0.5556

250

-0.0094

-0.0034

-2.5926

-0.5556

260

-0.0098

-0.0017

-2.9630

-0.5556

270

-0.0100

0.0000

-3.3333

-0.5556

280

-0.0098

0.0017

-2.9630

0.5556

290

-0.0094

0.0034

-2.5926

0.5556

300

-0.0087

0.0050

-2.2222

0.5556

310

-0.0077

0.0064

-1.8519

0.5556

320

-0.0064

0.0077

-1.4815

0.5556

330

-0.0050

0.0087

-1.1111

0.5556

340

-0.0034

0.0094

-0.7407

0.5556

350

-0.0017

0.0098

-0.3704

0.5556

360

0.0000

0.0100

0.0000

0.5556

Table 16

 

From the data in Table 16 above, the graph of velocity and acceleration against angle for both of the cams is plotted.  It is shown in the APPENDIX. 

            For the graph of velocity for harmonic cam, it is observed that the graph is a sinusoidal shape, of sine curve having a period of 360°.  Consequently, for its acceleration, the graph is also in sinusoidal shape of cosine curve, with full 360° period.  On the other hand, constant acceleration cam gives constant acceleration from 0° to 90° and the same value but deceleration from 90° to 270°.  From 270° to 360°, the graph is back to the constant acceleration value initiaaly.  Since acceleration is the second differential of distance, so the velocity graph is almost a linear straight line graph to give the constant acceleration and deceleration value.  This is the most important property of the constant acceleration cams.

 

Conclusion

 

In conclusion, by doing the cam and tappet experiment, the tappet motion for several different cam profiles have been investigated.  The results of the experiment tends to agree to the theoretical aspects of the experiment.  Although there is an error occur during performing the experiment, it does not effect the results of the experiment.  Therefore, the objective of the experiment is achieved since the results of the experiment has revealed the effect of using different types of follower and cam profiles in the process of converting rotary motion into linear or rocking motion of the cam follower.  The throw displacement, velocity and acceleration is very dependent to the types and profiles of the cams and also the followers for the performance of a variety of tasks.  

 

Appendix

 

A.     General equation:  Please refer to the formula included in the lab manual.

 

B.     Theoretical Sample of calculation: 

 

Taking q = 10° for all calculation

 

·         Convex cam

Displacement, x = OE – 20

 

Where OE = 55 sin b / sin (180-q)

            b  = q - a

sin a = 35 sin (180-q)/55

\x (q = 10°) = 0.1951 mm

 

·         Tangent cam

In the apparatus setup, q = q dial indicator - f

 Where f = 19.47°

\ q = - 9.47°

 

Displacement, x = 21.5 (sec q - 1)

                            = 21.5 (sec –9.47 - 1)

                           = 0.2971 mm

 

·         Harmonic cam

Displacement, x = R (1 – cos q) mm

Velocity, v            = w (R sin q ) m/s

Acceleration, a  = w2 R cos q m/s2

 

 Where R = 10 mm and w = 1 rad/s since constant angular velocity

\x = 10 (1 – cos 10°)= 0.152 mm

\v = 1 ( 10x10-3sin 10°) = 0.0017n m/s

\a = 12 (10x10-3 cos 10°) = 0.0098 m/s2

 

 

 

·         Constant acceleration cam

Displacement, x = [ (q/15)2 /3.6 ] = 0.1235 mm

Velocity, v            = (2q) / (3.6*15) = 0.3704 m/s

Acceleration, a  = 2 / 3.6 = 0.5556 m/s2

 

·         Circular cam : the theoretical value is included in the lab manual.